人物经历 1996年获美国 Memphis 大学博士学位,学位论文研究Ramsey函数的渐近性。曾任教于安徽师范大学和 河海大学 。 研究方向 主要研究 图论 中的极值问题,特别是Ramsey理论及极值图的结构,以及相关领域如随机图论方法, 极值图的代数构造方法。 主要贡献 1.有结果成为 Bollobás 所著研究生教材 Modern Graph Theory(Springer)中 定理 (Ch6,Theorem 13)。 2.关于经典 Ramsey 上界的估计被Chung和Graham等人写入Erdos on Graphs(p13),被说成是这方面当前最好的上界。3.部分解决了Erdos的一个猜想,他曾为此猜想悬赏500美圆。论文在JCTB发表后,成为该刊当年Most downloaded articles 之一。